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Quantum Gravity and the Problem of Measurement

Pedro F. GonzaÂlez-DõÂaz1
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We discuss the proposal that the quantum correlations contained in the pure state-
vector evolving according to SchroÈ dinger equation can be eliminated by the
action of multiply connected wormholes during measurement. A procedure is
devised to obtain a proper master equation which governs the changes of the
reduced density matrix of matter fields interacting with doubly connected
wormholes. It is shown that this master equation predicts an appropriate damping
of the off-diagonal correlations contained in the state vector.

1. THE PROPOSAL

There have been some proposals to provide the necessary decay of

quantum coherence during measurement with a physical explanation (Zurek,

1991). The most popular among these proposals is the so-called decoherence

program advocated mainly by Zeh (1970), Gell-Mann and Hartle (1990), and
Unruh and Zurek (1989). It is not quite clear, however, that these proposals

could provide a consistent mechanism to generate the causal nonlocality and

arrow of time which are also induced by quantum measurement (Bell, 1975;

OmneÁ s, 1994). Another approach to the quantum measurement problem has

been advocated by Penrose (1987). It ascribes the cause leading to the wave
packet collapse to some still unspecified form of gravitational interaction. In

this paper we shall consider a nonunitary evolution of microscopic systems

arising from a violation of causal locality which can only be induced by non-
simply connected wormholes (GonzaÂlez-DõÂaz, 1992).

Wormholes are microscopic connections between two otherwise discon-

nected flat regions of spacetime and represent a topology change in that they
induce an initial state, which is just flat space, to evolve into a final state

which is flat space plus a given number of baby universes (Hawking, 1990).
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We distinguish two possible inner topologies which may appear in wormholes.

If the inner topology is simply connected, the corresponding quantum state

is a pure state described by a wave function (Hawking, 1990). However, if
the inner topology of the wormholes is not simply connected, the quantum

state becomes mixed and should be described by a density matrix (GonzaÂlez-

DõÂaz, 1991).

The interaction formalism worked out by using the technique of the

Green function filtered by the wormhole quantum state (GonzaÂlez-DõÂaz 1991,

1993a, b) gives rise to a bilocal interaction contribution Pi Ibl(x1, x2; y1, y2),
where the bilocal factor Ibl is independent of the wormhole state. The prefactor

Pi depends, however, on that state. If we start with a wormhole wave function,

Pi [ P C is just an unimportant numerical coefficient of order unity, but if

we choose a density matrix as the wormhole state, then Pi [ P r b(nj) will

depend on the wormhole energy spectrum (GonzaÂlez-DõÂaz 1993a, b, 1994a,

b, 1995). The quantum state of wormholes is generally given by a path integral

Fw 5 # C

d[g m n ]d[ F 0]e
2 I[g m n , F ] (1.1)

in which I is the Euclidean action and C represents the class of asymptotically
flat Euclidean four-geometries and asymptotically vanishing matter-field con-

figurations which match either the prescribed data on a three-surface dividing

the four-manifold in the case of a pure state given by a wave function C
(Hawking, 1988), or the data on its three-surface and the reverse orientation

of the corresponding set of data on its copy three-surface in the case of a

mixed state given by a density matrix r b (GonzaÂlez-DõÂaz, 1991). If Fw 5 C ,
one can apply the Gell-Mann±Low formula and obtain an effective interaction

Hamiltonian given by the Hawking±Coleman expression (Hawking, 1988;

Coleman, 1988a, b), ( k H L
k ( F ) (a ²

k 1 ak), where the discrete index k collec-

tively labels the types of different baby universes, the H L
k are matter-field

interaction Hamiltonian terms, and the ak are Fock operators for the baby

universes. This leads (Hawking, 1990) to no loss of quantum coherence and
implies (GonzaÂlez-DõÂaz, 1994a, b) that the quantum state of a simply con-

nected wormhole contains an equal contribution from complex and their

complex conjugate metrics, so that causal locality (i.e., [H I(x), H I( y)] 5 0)

holds (Hawking, 1990) and both C and the quantum state of the matter field

should then be time-symmetric. On the contrary, if F v 5 r b , one cannot

apply the Gell-Mann±Low formula. Using then a combinatorial procedure,
we obtain (GonzaÂlez-DõÂaz, 1992) ( k H L

k( F ) Ak(a
²
k, ak), where Ak generally

contains higher, nonlinear powers of the baby-universe Fock operators.

Restricting ourselves to the simplest case in which the inner wormhole topol-

ogy is doubly connected (GonzaÂlez-DõÂaz, 1992), we have Ak . a 1 2
k 1 a 2

k and
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# d 1x0[H
I(x), H I(x I)] 5 D0 1 c ² c 1

1

2 2 sinh(2k0) (1.2)

where D0 is a constant of order unity, with the c’ s being Fock operators for

the matter field, and k0 5 (2k /(R 2
0 2 k))1/2, in which (2k)1/2 denotes the proper

separation distance, measured on the wormhole inner three-manifold, between

the two correlated points at which two baby universes are created or annihi-

lated, two at a time, and (R 2
0 2 k)1/2 gives the length scale of the baby

universes. Then the demand of Lorentz invariance implies (GonzaÂlez-DõÂaz,
1992, 1994a, b) that (1.1) leads to the loss of quantum coherence so as to a

breakdown of time symmetry and causal locality, at least for CP-invariant

matter with positive energy. Thus, non-simply connected wormhole fluctua-

tions are able to induce all the effects which are required for quantum measure-

ments. We summarize then our proposal as follows. The unitary evolution

of the state vector governed by the SchroÈ dinger equation should be associated
with a physical system interacting with wormholes which are all in a pure state,

while the nonunitary quantum-measurement evolution should correspond to

a physical situation in which the system interacts with at least a nonzero

proportion of wormholes in the mixed state.

Our proposal needs to be supplemented, however, in two important
respects. First of all, it is not still quite clear whether the loss of quantum

coherence induced by the breakdown of casual locality implied by (1.2) is

of the kind required by quantum measurement to damp the off-diagonal

correlations in the state vector in a sufficiently short decoherence time. This

question will be addressed in the next sections. Second, one would need to

provide the scenario with a reasonable mechanism by which one could answer
the question, ª why should one suddenly replace simply connected wormholes

by multiply connected wormholes when some quantum measurement is being

carried out on a system?º We shall devote the rest of the present section to

briefly comment on this question. Wormholes were initially claimed (Cole-

man, 1988a, b) to fix the observed values of all physical and cosmological

constants. Actually, this can only be the case when multiply connected worm-
holes are considered; otherwise, the topological fluctuations induce unphysi-

cal values for these constants, such as either zero or infinite values for the

physical constants or, more importantly, a more probable large negative value

for the cosmological constant. It is only for statistical wormholes that the

whole set of observable effects induced by them on ordinary matter at low

energies can be thought to produce some anthropic consequences, along with
observability of the matter states and their couplings (GonzaÂlez-DõÂaz, 1993a,

b). Indeed, of the set of all possible values of the physical and cosmological

constants, such wormholes should take on those values which will satisfy

the requirement that there exist sites in the universe where carbon-based life



252 GonzaÂlez-DõÂaz

can evolve, thus rendering any form of anthropic principle (Barrow and

Tipler, 1986) just an effect induced by statistical wormholes on matter. On

the other hand, it has been shown (GonzaÂlez-DõÂaz, 1994a, b) that it is just
the purely statistical content of single mixed wormhole states which can give

rise to the emergence of a consistently defined cosmological time concept.

There is no similar time concept arising from wormholes when they are in

a pure state. The above question then becomes meaningless, since asking

about anything prior to the emergence of time does not make any sense.

Moreover, the time asymmetry which is also induced by single wormhole
statistical states can be regarded as the common physical origin for all existing

time arrows, including the so-called psychological arrow by which observers

are able to remember just those records in their memory produced by measure-

ments already performed. It appears then that there is some strong linkÐ if

not direct correspondenceÐ between the appearance of non-simply connected

wormholes and both the existence of observers able to perceive the flow of
time and record the results of measurements, and the simultaneous emergence

of a causally connected classical reality endowed with a set of observables.

2. THE MASTER EQUATION

We shall restrict ourselves to the simplest case of interaction between
a massless, conformally invariant scalar matter field F (x, t) and single, doubly

connected wormholes (GonzaÂlez-DõÂaz, 1992), and use the formalism of the

density matrix in the interaction representation and ordinary time-dependent

perturbation theory in first-order approximation. We start with an interaction

Hamiltonian H I 5 ( iH
J
i ( F )A i and assume a full density matrix r 5 r F ^

r b 5 r F ( i,j | i & ^ j | , where r F and r b are density matrices for the scalar matter
field and the baby universes, respectively. From the equation of motion for

r , which we iterate for small increment of time, we obtain with the same

approximation as used in ordinary time-dependent perturbation calculations,

r Ç F (k, t) 5 Trb o
i, j

[HI
iAi, [H I

j Aj, r ]] (2.1)

in which Trb means tracing over the baby universe operators.
Also, we assume an orthonormalization relation

^ j | i & 5 d (2k 2 (x 2 x8)2) d ( p 2 2 (R 2
0 2 k) 2 1) (2.2)

and commutation relations for hermitian operators Ai (GonzaÂlez-DõÂaz, 1992)

# d 4x0[A(x), A (x8)] 5 E0 1 a ² a 1
1

2 2 sinh 1 8k

R2
0 2 k 2

1/2

(2.3)

where x0 5 1/2(x 2 x8) and E0 is a constant c-number of order unity. The

baby universe commutator (2.3) will consistently vanish at the limit k ® 0.
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Using then the usual Fock expansion for quantum-field operators, and

introducing the substitution (GonzaÂlez-DõÂaz, 1992) ( i, j ® * d 4x0, we obtain,

after integrating over x0 5 1/2(x 2 x8) and momentum p, with the custom-
ary measure

dPÄ 5
dp

(2 p )3 d (( p)2 2 (R 2
0 2 k) 2 1 u )( p0)

the master equation for the reduced density matrix r F of the scalar matter

field F :

r Ç F (k0, t) 5 A (k0, N )O4(k0, c) r F 1 B(k0, N ) r F O4(k0, c)

2 2[C (k0, N )c 2 r F c ² 2 1 D (k0, N )O r
4(c) 1 F (k0, N )c ² 2 r F c2]

(2.4)

where N 5 0, 2, 4, . . . denotes the initial number of baby universes, k0 5
(2k /(R 2

0 2 k))1/2, Q (k0, N ) 5 E0c
2 2k0(2N 1 1) sinh (2k0),

O4(k0, c) 5 e 4k0c2c ² 2 1 4 F (c ² c)2 1 c ² c 1
1

4 G e 2k0 1 c ² 2c2 (2.5)

O r
4(c) 5 2 1 2c ² c r F c ² c 1 c ² c r F 1 r F c ² c 1

1

2
r F 2 (2.6)

A (k0, N ) 5 (N 1 1)(N 1 2)e 2 4k0 1 N(N 1 1) 1
1

4
e 2 2k0 (2.7)

1 2Q (k0, N )

B (k0, N ) 5 A (k0, N ) 2 2Q (k0, N ) (2.8)

C (k0, N ) 5 (N 1 1)(N 1 2) 1 F N (N 1 1) 1
1

4 G cosh(2k0) (2.9)

1 Q (k0, N )

D (k0, N ) 5 2(N 1 1)2cosh(2k0) 1
1

4
1 Q (k0, N ) (2.10)

and

F (k0, N ) 5 F (N 1 1)(N 1 2) 1
1

4 G cosh(2k0) 1 N (N 1 1) (2.11)

1 Q (k0, N )
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In order to eliminate changes in the reduced density matrix r F (k0, t)
which do not originate from quantum nonlocality, we first take the limit

k ® 0 in (2.4) and subtract then the resulting expression (which is associated
with virtual processes by which scalar field quanta are created and annihilated

in such a way as to contribute to the full master equation terms proportional

to the Fock operator products c 2c ² 2, c ² 2c 2, c 2 r F c ² 2 and c ² 2 r F c 2) from (2.4)

to finally obtain a reduced density matrix for matrix elements in the Fock

space of matter-field number states, in diagonal representation Pn (k, t), such

that PÇ n (0, t) 5 0 results from a minimal condition for the vanishing of the
nonlocal effects in PÇ n (k, t) at k ® 0, where

PÇ n(k, t) 5 2 P (N, k0) 1 n 1
1

2 2
2

Pn(k, t) (2.12)

with P(N, k0) 5 8(N 1 1±2 ) sinh(2k0). Equation (2.12) consistently reduces to

zero only when the parameter k ® 0. Note that even for the vacuum states

N 5 n 5 0, Pn (k, t) is not time-invariant, but gives rise to a residual zero-

point loss of quantum coherence.

3. THE TRANSITION FROM QUANTUM TO CLASSICAL

The density matrix r F in scalar particle number representation P(k, t)
corresponds actually to a quantum state in position representation. The worm-
hole parameter (2k)1/2 is nothing but the particular value of the spacelike

separation (x 2 x8) which coincides with the proper separation distance,

measured on a cross section of the inner wormhole manifold, between the

two correlated points at which baby universes are created or annihilated in

pairs. Hence, the evolution of the density matrix Pn(x, x8, t) will satisfy an

accordingly generalized master equation, i.e.,

PÇ n(x, x8, t) 5 2 P (N, x, x8) 1 n 1
1

2 2
2

P(x, x8, t) (3.1)

with

P (N, x, x8) 5 8 1 N 1
1

2 2 sinh F 4(x 2 x8)2

r 2
0 G

1/2

(3.2)

where r0 5 (R 2
0 2 k)1/2 is the radius of the throats in the wormhole.

A coherent superposition of two Gaussians separated by a distance equal

to D x 5 x 2 x8 will now be considered (Zurek, 1991). At macroscopic

distances, D x will be much larger than the Gaussian width, so that the density

matrix describing the state vector will have four peaks, two at x 5 x8 (i.e.,
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the diagonal elements, which should survive the wave packet collapse) and

two at x Þ x8 (i.e., the off-diagonal elements responsible for quantum correla-

tions, which should disappear during the measurement process, giving rise
to position as an exactly preferred basis). Clearly, as required by quantum

measurement, equation (3.1) will not produce any effects on the diagonal

peaks, but will induce a substantial damping of the off-diagonal peaks. The

parameter N appearing in (3.1) is proportional to the initial population of

baby universes. Hence, in semiclassical aproximation, (3.2) can be written

P (N, x, x8) [ P (S v , x, x8) 5 8e 2 S v sinh F 4(x 2 x8)2

r 2
0 G

1/2

(3.3)

where S v is the Euclidean action of the wormhole. For non-simply connected
wormholes, the path integral which describes the effects of wormholes on

ordinary matter is given in terms of a Planckian probability (GonzaÂlez-DõÂaz,

1993a, b, 1995) p ( a ) for the Coleman a parameters (Hawking, 1990), and

hence the semiclassical nucleation rate for baby universes,

e 2 S v 5 a 2{2 ln[1 1 p ( a ) 2 1]} 2 1 (3.4)

would appear to play the role of an equilibrium temperature Tb for our

wormhole±scalar particle system.
On the other hand, the factor r 2 1

0 in the argument of the hyperbolic sine

in (3.3) must be proportional to the mass m acquired by the scalar particles

while interacting with the wormholes, and the whole factor P (Tb , x, x8) would

be associated with the extreme case where only wormholes which are non-

simply connected are involved in the interaction. Since in quantum gravity

there should also exist a given, generally nonzero contribution from simply
connected wormholes, in order to account for this contribution one should

modify the whole expression (3.1) by introducing an overall factor 0 # g b

# 1, interpretable as a rate of coherence loss induced by interaction with

wormholes, so that the full master equation would become

PÇ n(x, x8, t) , 2 g bTb sinh[(x 2 x8)m] 1 n 1
1

2 2
2

P
2

n(x, x8, t) (3.5)

Our master equation can now be compared with the term responsible for

Brownian fluctuations (Zurek, 1991) of the master equation in current decoh-

erence programs

r Ç (f)
CL 5 2 2M g T(x 2 x8)2 r (f)

CL (3.6)

where the relaxation rate is g 5 h / ^ 2M & , with h the interaction viscosity, T
the field temperature, and M the mass. It is seen that although (3.5) and (3.6)
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depend on similar parameters in the same qualitative way, (3.5) shows quite

stronger dependences on (x 2 x8) and mass for large values of these parame-

ters. Note, furthermore, that (3.5) depends on the square of particle number.
In any case, these two expressions damp the off-diagonal correlations in the

qualitative way required by quantum measurement.
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